Isogeny Class and Frobenius Root Statistics for Abelian Varieties over Finite Fields

نویسنده

  • S. G. VLĂDUŢ
چکیده

Let I(g, q, N) be the number of isogeny classes of g-dimensional abelian varieties over a finite field Fq having a fixed number N of Fq-rational points. We describe the asymptotic (for q →∞) distribution of I(g, q, N) over possible values of N . We also prove an analogue of the Sato—Tate conjecture for isogeny classes of g-dimensional abelian varieties. 2000 Math. Subj. Class. Primary: 11G25, 14G15, 14K15; Secondary: 11G10, 14K02, 28A33.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weil Numbers Generated by Other Weil Numbers and Torsion Fields of Abelian Varieties

Using properties of the Frobenius eigenvalues, we show that, in a precise sense, “most” isomorphism classes of (principally polarized) simple abelian varieties over a finite field are characterized, up to isogeny, by the sequence of their division fields, and a similar result for “most” isogeny classes. Some global cases are also treated.

متن کامل

Abelian varieties over finite fields

A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...

متن کامل

Groups of Points on Abelian Varieties over Finite Fields

Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of k-rational points on varieties from this class in terms of Newton polygons of fA(1− t).

متن کامل

Groups of Rational Points on Abelian Varieties over Finite Fields

Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of rational points on varieties from this class in terms of Newton polygons of fA(1− t).

متن کامل

Principally Polarized Ordinary Abelian Varieties over Finite Fields

Deligne has shown that there is an equivalence from the category of ordinary abelian varieties over a finite field A: to a category of Z-modules with additional structure. We translate several geometric notions, including that of a polarization, into Deligne's category of Z-modules. We use Deligne's equivalence to characterize the finite group schemes over k that occur as kernels of polarizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001